Изменение степени сжатия
Разгон до 100
Меню

     
 МОЩНОСТЬ ВАШЕГО АВТО?
     
 
     
           
Всего ответов: 22959
     
     
     
Поиск

Форма входа
Логин:
Пароль:

Разгон до 100

Статистика

Онлайн всего: 2
Гостей: 2
Пользователей: 0


Двигатели с переменной степенью сжатия

Двигатели с переменной степенью сжатия.

  Развитие двигателей и улучшение их мощностных и экономических показателей связано с повышением степени сжатия. Однако для бензиновых двигателей величина степени сжатия ограничивается появлением аномальных процессов сгорания. Одним из наиболее опасных его видов является калильное зажигание. Особенно опасно движение с калильным зажиганием при использовании наддува, как с механическим приводом нагнетателя, так и при турбонаддуве. Увеличение температуры и давления заряда в цилиндре даже при высокооктановом бензине способствует перегреву поверхности камеры сгорания и преждевременному неуправляемому воспламенению смеси еще до появления искры. Обычно воспламенение происходит от электродов свечи или ее изолятора. При этом датчик детонации, как правило, не может четко фиксировать момент начала калильного зажигания, а применение слишком «холодных» свечей может привести к появлению нагара и шунтирования при длительной работе на режимах малых нагрузок, например в условиях городского движения.



  Но гораздо чаще мы сталкиваемся с другим видом аномального сгорания — детонацией. Это сгорание с высокими скоростями (до 2000 м/с) остаточной части топливовоздушного заряда в зоне наиболее удаленной от свечи. Сгорание сопровождается металлическими стуками, иногда неправильно называемыми "стуком поршневых пальцев". При длительной работе с детонацией перегревается двигатель, начинается эрозия стенок камеры сгорания, ломаются перемычки канавок поршневых колец. Все эти явления особенно усугубляются при использовании наддува. Датчик детонации, автоматически устанавливающий более поздние углы опережения зажигания при появлении детонации, полностью проблемы не решает, т.к. при стишком поздних углах опережения зажигания повышается температура отработавших газов, начинается прогар выпускных клапанов, может даже треснуть коллектор и т.п. Поэтому большинство бензиновых двигателей с наддувом, даже при эффективной системе охлаждения наддувочного воздуха, имеют значительно меньшую степень сжатия (примерно на целую единицу при прочих равных условиях). В результате на основных эксплуатационных режимах (при движении по ровной дороге с постоянной скоростью, когда нагрузка не превышает 2/3 от полной) из-за низкой степени сжатия увеличение расхода топлива иногда доходит до 10-20%. Но на частичных нагрузках, когда давление и температура заряда в цилиндре снижаются, аномальных процессов можно не опасаться. Казалось бы, на этих режимах следовало поднять и степень сжатия. Давней мечтой двигателистов было создание устройства для изменения степени сжатия на ходу. Для автомобильных двигателей, работающих значительную часть времени на резко переменных нагрузках, основной проблемой является возможность изменять степень сжатия за доли секунды, например при переходе от режима холостого хода к полной нагрузке, особенно во время разгона автомобиля на низших передачах. Важной проблемой при создании двигателя с переменной степенью сжатия является также и постоянное ужесточение требований к выбросу оксидов азота, увеличивающихся при высоких температурах и давлении в процессе сгорания. Но использование для серийных двигателей трехкомпонентных каталитических нейтрализаторов и микропроцессорных систем управления двигателем, включая управление зажиганием и механизмом изменения степени сжатия, позволяет решать эти проблемы. Дополнительным поводом повышенного интереса к созданию двигателя с переменной степенью сжатия с целью улучшения топливной экономичности, является особое внимание, уделяемое последнее время к количеству выброса С02, связанное с парниковым эффектом во всем мире. А для его снижения необходимо уменьшать расход топлива. Одновременно целесообразность оптимизации степени сжатия на различных режимах определяется все возрастающими требованиями к выбросу СО, СН и особенно оксидов азота.

  Существует много оригинальных решений регулирования степени сжатия. Одним из них являлось выполнение дополнительной камеры в головке блока с клапаном, отключающим ее от основной камеры сгорания при переходе на частичные нагрузки. Основным недостатком данного решения является увеличение поверхности камеры сгорания и, соответственно, повышенным потерям в охлаждающую среду, перегрев клапана, газодинамические потери.

  Аналогичным решением стало установка в головке цилиндров дополнительного поршня с гидроприводом, при перемещении которого изменялся объем камеры сгорания.

  Изменение длинны шатуна

Изменение длинны шатуна

  Другим направлением было изменение геометрии крейцкопфного кривошипно-шатунного механизма путем отклонения направляющего штока, или создание других вариантов кривошипно-шатунного механизма, позволяющих менять расположение поршня относительно головки цилиндра.

изменение степени сжатия перемещением коленвала

  Оригинальным решением было применение составного телескопического поршня с гидроприводом, автоматически перемещающего днище поршня в зависимости от среднего давления в цилиндре: при увеличении наполнения, а следовательно, и давления газа в цилиндре, масло из рабочей полости выдавливается, днище утапливается в поршень и объем камеры сгорания увеличивается. Но эти двигатели в серийном производстве так и не появились из-за существенного усложнения конструкции. Кроме того, на изменение степени сжатия требовалось слишком много времени.

  Реальное решение для изменения степени сжатия было применено на двигателях для определения октанового чиста топлива. Это достигалось перемещением цилиндра с головкой цилиндра относительно коленчатого вала. Однако для этих двигателей время на изменение степени сжатия не имеет решающего значения.

изменение степени сжатия Saab

  Для современного автомобиля оригинальная конструкция двигателя с переменной степенью сжатия с использованием этого же принципа была разработана фирмой Saab известной многими смелыми прогрессивными решениями. Это особенно важно в связи с тем, что рядный 5-ти цилиндровый длинноходный двигатель 1,6 л (S/D=88/68MM) был оборудован объемным нагнетателем с механическим приводом, обеспечивающим давление наддува до 2,8 бар. Опоры коленчатого вала размещены в картере. Моноблок цилиндров выполнен заодно с головкой, в которой расположены клапаны и распределительные валы. Картер и моноблок имеют общую ось. Эксцентриковый механизм с шатуном по сигналу электронного блока управления поворачивает моноблок относительно картера в пределах 40градусов, при этом степень сжатия меняется от 8 (при работе с нагнетателем) до 14 (на режимах малых нагрузок). Двигатель развивает 165 кВт при 6000 об/мин (140 л.с.), максимальный крутящий момент — 305 Нм при 4000 об/мин. Такие мощностных показатели соответствуют обычному двигателю с рабочим объемом 3 л.  

Схема двигателя с переменной степенью сжатия MCE-5

1. соединительный рычаг
2. шестерня синхронизации
3. стойка поршня
4. рабочий поршень
5. выпускной клапан
6. головка блока цилиндров
7. впускной клапан
8. поршень управления
9. блок цилиндров
10. стойка поршня управления
11. зубчатый сектор
12. коленчатый вал

Общие знания о современных двигателях
Тюнинг двигателя
Тюнинг автомобилей и не только   на главную        0-100 км/ч    0-100  













Случайные статьи
1995 McLaren F1 GTR
Сиденье болида формулы 1









zero-100.ru © 2020 Ростов на Дону
Бесплатный конструктор сайтов - uCoz
Яндекс.Метрика